martes, 17 de febrero de 2009

CENTRALES TERMICAS


CENTRAL TERMICA:
Una central térmica es una instalación que produce energía eléctrica a partir de la combustión de carbón, fuel-oil o gas en una caldera diseñada al efecto. El funcionamiento de todas las centrales térmicas, o termoeléctricas, es semejante.
El combustible se almacena en parques o depósitos adyacentes, desde donde se suministra a la central, pasando a la caldera, en la que se provoca la combustión. Esta última genera el vapor a partir del agua que circula por una extensa red de tubos que tapizan las paredes de la caldera. El vapor hace girar los álabes de la turbina, cuyo eje rotor gira solidariamente con el de un generador que produce la energía eléctrica; esta energía se transporta mediante líneas de alta tensión a los centros de consumo. Por su parte, el vapor es enfriado en un condensador y convertido otra vez en agua, que vuelve a los tubos de la caldera, comenzando un nuevo ciclo.
El agua en circulación que refrigera el condensador expulsa el calor extraído a la atmósfera a través de las torres de refrigeración, grandes estructuras que identifican estas centrales; parte del calor extraído pasa a un río próximo o al mar.
Las torres de refrigeración son enormes cilindros contraídos a media altura (hiperboloides), que emiten de forma constante vapor de agua, no contaminante, a la atmósfera. Para minimizar los efectos contaminantes de la combustión sobre el entorno, la central dispone de una chimenea de gran altura (llegan a los 300 m) y de unos precipitadores que retienen las cenizas y otros volátiles de la combustión. Las cenizas se recuperan para su aprovechamiento en procesos de metalurgia y en el campo de la construcción, donde se mezclan con el cemento.
FUNCIONAMIENTO:
En las centrales térmicas convencionales, la energía química ligada por el combustible fósil (carbón, gas o fuel -óil) se transforma en energía eléctrica. Se trata de un proceso de refinado de energía. El esquema básico de funcionamiento de todas las centrales térmicas convencionales es prácticamente el mismo, independientemente de que utilicen carbón, fuel -óil o gas.
Las únicas diferencias sustanciales consisten en el distinto tratamiento previo que sufre el combustible antes de ser inyectado en la caldera y el diseño de los quemadores de la misma, que varía según el tipo de combustible empleado.
El vapor de agua se bombea a alta presión a través de la caldera, a fin de obtener el mayor rendimiento posible. Gracias a esta presión en los tubos de la caldera, el vapor de agua puede llegar a alcanzar temperaturas de hasta 600 ºC (vapor recalentado).
Este vapor entra a gran presión en la turbina a través de un sistema de tuberías. La turbina consta de tres cuerpos; de alta, media y baja presión respectivamente. El objetivo de esta triple disposición es aprovechar al máximo la fuerza del vapor, ya que este va perdiendo presión progresivamente. Así pues, el vapor de agua a presión hace girar la turbina, generando energía mecánica. Hemos conseguido transformar la energía térmica en energía mecánica de rotación.
El vapor, con el calor residual no aprovechable, pasa de la turbina al condensador. Aquí, a muy baja presión (vacío) y temperatura (40ºC), el vapor se convierte de nuevo en agua, la cual es conducida otra vez a la caldera a fin de reiniciar el ciclo productivo. El calor latente de condensación del vapor de agua es absorbido por el agua de refrigeración, que lo entrega al aire del exterior en las torres de enfriamiento.
La energía mecánica de rotación que lleva el eje de la turbina es transformada a su vez en energía eléctrica por medio de un generador asíncrono acoplado a la turbina.

ESQUEMA DEL FUNCIONAMIENTO:

COMPONENTES
-Caldera de combustión
-Turbina de vapor
-Alternador
-Sistema de refrigeración
-Instalaciones de control
-Booster
-Área de tratamiento de agua
-Área de tratamiento de combustible
-Área de tratamiento de aceite -Área de protección contra incendios

IMPACTO AMBIENTAL:
Estas centrales suelen presentarse como tecnologías limpias debido a la reducción de las emisiones de contaminantes que en ellas se consiguen. Se alude en primer término al vertido casi nulo de Dióxido de Azufre (SO2) debido a que este elemento (S) es prácticamente inexistente en el gas natural. Y se insiste mucho en las reducciones que comportaba en las emisiones de Dióxido de Carbono (CO2)por kWh producido, con el consiguiente alivio del efecto invernadero. Se omite señalar que nuestro país ya superó en el año 1999 los límites fijados para el ¡2010! por el compromiso firmado en Kioto de emisión de gases de invernadero, y que la producción de electricidad ha sido -y muy probablemente seguirá siendo- uno de los responsables de este crecimiento.
Este crecimiento desbocado se ha debido en buena medida a la fuerte reducción de los precios de la electricidad. Desde 1996 dichos precios han bajado en términos reales más del 23% en los clientes sometidos a tarifa (pequeños consumidores) y más del 28% para los que negocian directamente el precio del kWh. Debido a dicho abaratamiento y a la existencia de una etapa de fuerte crecimiento económico la demanda de electricidad ha crecido a tasas de más del 6% en este período. Algo desconocido desde los 70. Un objetivo político de primer orden del gobierno ha sido trasladar a los precios finales de la energía la profunda reducción que se había operado en los costes. Con ello reducía de forma significativa la inflación y ganaba votos. El "único" problema ha sido el aumento desbocado de los impactos ambientales. Y por supuesto de las emisiones de CO2. Por ello, aunque se produjera un proceso de sustitución acelerada de centrales de carbón por grupos de gas en ciclo combinado, el crecimiento de la demanda-pasada y previsiblemente futura- superaría al efecto combinado de mejora de la eficiencia y sustitución de combustibles. Las emisiones no se contienen.
No deben ignorarse tampoco, por su contribución al cambio climático, las fugas accidentales de metano (CH4,componente casi exclusivo del gas natural) cuyo potencial de calentamiento a 20 años es 56 veces mayor que el de una cantidad igual de CO2. Según el IPCC (Panel Intergubernamental de expertos en Cambio Climático) la tasa de aumento anual de este gas es del 0,6% y es responsable, aproximadamente, del 16% del calentamiento terrestre actual. Comentar que se compadece mal las previsiones de reducir las emisiones de CH4 en casi un 24% en el 2010 con respecto a 1990, como preveía el Consejo Nacional del Clima, con la idea de aumentar mucho la red de gasoductos en nuestro país.
Un balance similar ofrecen las emisiones de óxidos de Nitrógeno (NOx). Estas sustancias son componentes de las llamadas lluvias ácidas y se producen por reacción directa del Nitrógeno y el Oxígeno del aire al elevarse la temperatura. Una central de aproximadamente 1000 MW. que funcione unas 6.600 horas equivalentes al año emitiría del orden de 2.100 Tm. Estas sustancias son también precursores de la formación de Ozono troposférico, un peligroso contaminante que está alcanzando valores alarmantes en la atmósfera de ciertas zonas del territorio peninsular (Madrid, Huelva, Tarragona, Puertollano...). En bastantes de estos sitios se están superando los límites establecidos cuando las condiciones meteorológicas facilitan su formación (elevada insolación y temperatura). No es nada aventurado suponer que el caudal de emisión que representa la planta agravará de forma significativa el fenómeno hasta convertirlo en un problema grave de difícil o imposible control. Se provocarán con ello daños significativos sobre la salud de quienes allí habitan.
Un problema que deben enfrentar estas plantas son sus necesidades de refrigeración. Como quedó dicho más arriba necesitan evacuar aproximadamente el 45% de su potencia térmica total. Las técnicas convencionales son dos: circuito abierto y torres húmedas. En la primera se necesitan emplear ingentes cantidades de agua que es devuelta al medio después de sufrir un salto térmico significativo. Con el fin de no dañar a los ecosistemas suelen existir dos límites a respetar. El primero es que dicho salto no supere en ningún caso los 3ºC, y el segundo que la temperatura total del agua no llegue a los 30ºC en ningún momento). No existe caudal suficiente en las cuencas altas o medias de ningún río peninsular para utilizar este sistema que es el más sencillo y barato de implantar. Su uso se limita a las plantas costeras. Es preciso estudiar siempre el impacto específico sobre los ecosistemas costeros ya que en algún caso pueden verse afectados por esta polución térmica.
El otro sistema tradicional (torres húmedas) "aprovecha" el calor residual para evaporar agua y necesita caudales menores. Aunque este es un uso consuntivo del agua de difícil encaje en cuencas que no pueden definirse en modo alguno como excedentarias. El consumo, para los rangos de potencia demandados, se sitúa entre 0,15 y 0,7 m3/seg. A la limitación en la disponibilidad del recurso hay que añadir la necesidad de purgar las sales contenidas en el agua evaporada que en todas las circunstancias degrada su calidad y que en algún caso puede llevar el impacto hasta valores inasumibles. Tampoco deben olvidarse entonces las alteraciones del microclima del lugar debido a las nubes formadas.Recientemente hay compañías promotoras de proyectos (Entergy, Intergen...) que aseguran ser capaces de evacuar el calor residual con la ayuda sólo del aire en cualquier época del año, con un mecanismo no muy diferente del de los radiadores de los coches. Esto exige una superficie de contacto muy grande que lleva a la necesidad de ingentes cantidades de terreno o al empleo de elaboradísimas estructuras de ingeniería. En ambos casos se traduce en sustanciales incrementos de los costes de construcción. Es preciso además estudiar el impacto sobre los ecosistemas y cultivos cercanos de este aire recalentado. Debe mantenerse un saludable escepticismo sobre la posibilidad real de construir estos sistemas en nuestro país, hay que recordar que hasta ahora no existe nada igual. Lo más parecido es el sistema mixto de refrigeración aire-agua instalado en la central nuclear de Ascó que se sitúa a mitad de camino entre las opciones segunda y tercera de las enunciadas.
Y es preciso analizar en cada caso los impactos de las instalaciones anexas (posibles depósitos del combustible principal o de los auxiliares, equipamientos de producción eléctrica...), los específicos de la fase de construcción (afecciones a vías de acceso, ruidos, polvo, efectos sobre cauces, sobre valores culturales o arqueológicos...), las servidumbres urbanísticas provocadas por las líneas eléctricas de evacuación, por las subestaciones necesarias...

TECNOLOGIAS CORRECTORAS:
Proceso de absorción
Basan su funcionamiento en el hecho de que los gases residuales están compuestos de mezclas de sustancias en fase gaseosa, algunas de las cuales son solubles en fase líquida. En el proceso de absorción de un gas, el efluente gaseoso que contiene el contaminante a eliminar se pone en contacto con un líquido en el que el contaminante se disuelve. La transferencia de materia se realiza por el contacto del gas con el líquido en lavadores húmedos o en sistemas de absorción en seco.
Proceso de combustión
La combustión constituye un proceso apropiado par la eliminación de compuestos orgánicos transformándolos en dióxido de carbono y vapor de agua y también es válido para determinadas sustancias inorgánicas. Tipos de combustión:
Espontánea. Cuando se trata de eliminar gran parte de los gases que son tóxicos que tienen olores fétidos, la combustión ha de realizarse a alta temperatura y con tiempo de retención controlado, por lo que el coste de combustible puede ser elevado.
Procesos catalíticos. Con el fin de realizar la combustión a temperaturas más bajas, suele utilizarse la combustión en presencia de un catalizador, por lo general un metal de transición depositado en una matriz de alúmina. Este tipo de combustión suele emplearse en la eliminación de trazas de compuestos que contienen fenoles, formaldehído, azufre, etc. Un problema que presenta la combustión catalítica es la del envenenamiento del catalizador por algunas sustancias en forma de partículas.
Captación de partículas
Según el principio en que se basa el proceso de separación de las partículas, pueden establecerse los siguientes tipos de equipos de depuración: colectores, precipitaciones electrostáticas, filtros de mangas, lavadoras y absorbedores húmedos.
CENTRALES INSTALADAS EN ESPAÑA:

Mapa de localización












La distribución de las centrales térmicas responde a factores como los siguientes:• La proximidad de cuencas mineras que las abastezcan de combustible. Esto explica la gran densidad de centrales en la cuenca minera de Asturias y León, así como el grupo de centrales (Teruel y Escucha) en la cuenca de lignitos aragonesa.• La localización costera, que facilita su abastecimiento con carbones importados o fuel. Es el caso del rosario de centrales en el sur y levante: Castellón, Escombreras, Litoral de Almería, Algeciras y Cádiz. Secundariamente, la localización sobre un gran oleoducto, como el que circula desde Zaragoza a Rota (Puertollano).• La proximidad a los centros urbanos que debe abastecer. Aunque el transporte de energía eléctrica a largas distancias es una actividad que no ofrece especiales dificultades, áreas urbanas como la de Barcelona y Bilbao están rodeadas de una red relativamente densa de centrales, lo que no sucede en Madrid.a distribución de las centrales térmicas responde a factores como los siguientes:• La proximidad de cuencas mineras que las abastezcan de combustible. Esto explica la gran densidad de centrales en la cuenca minera de Asturias y León, así como el grupo de centrales (Teruel y Escucha) en la cuenca de lignitos aragonesa.• La localización costera, que facilita su abastecimiento con carbones importados o fuel. Es el caso del rosario de centrales en el sur y levante: Castellón, Escombreras, Litoral de Almería, Algeciras y Cádiz. Secundariamente, la localización sobre un gran oleoducto, como el que circula desde Zaragoza a Rota (Puertollano).• La proximidad a los centros urbanos que debe abastecer. Aunque el transporte de energía eléctrica a largas distancias es una actividad que no ofrece especiales dificultades, áreas urbanas como la de Barcelona y Bilbao están rodeadas de una red relativamente densa de centrales, lo que no sucede en Madrid.
IMAGENES DE LA CENTRAL:


















CURIOSODADES
VENTAJAS :
Son las centrales más baratas de construir, especialmente las de carbón, debido a la facilidad de construcción y la energía generada de forma masiva.
Las centrales de ciclo combinado de gas natural son mucho más eficientes que una termoeléctrica convencional, aumentado la electricidad generada con la misma cantidad de combustible, y rebajando las emisiones de gases contaminantes en un 20%.

INCONVENIENTES :
El uso de combustibles fósiles genera emisiones de gases de efecto invernadero y de lluvia ácida a la atmósfera, junto a partículas volantes (en el caso del carbón) que pueden contener metales pesados.
Al ser los combustibles fósiles, una fuente de energía agotable, su uso está limitado a la duración de las reservas.
Sus emisiones térmicas y de vapor pueden alterar el microclima local.
Afectan negativamente a los ecosistemas fluviales debido a los vertidos de agua caliente en estos.
Su rendimiento es bajo comparado con el rendimiento ideal, a pesar de haberse realizado grandes mejoras en la eficacia.










No hay comentarios:

Publicar un comentario